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This paper reviews some aspects of nonlinear model building from data with �gray box� and without �black
box� prior knowledge. The model class is very important because it determines two aspects of the final model,
namely �i� the type of nonlinearity that can be accurately approximated and �ii� the type of prior knowledge
that can be taken into account. Such features are usually in conflict when it comes to choosing the model class.
The problem of model structure selection is also reviewed. It is argued that such a problem is philosophically
different depending on the model class and it is suggested that the choice of model class should be performed
based on the type of a priori available. A procedure is proposed to build polynomial models from data on a
Poincaré section and prior knowledge about the first period-doubling bifurcation, for which the normal form is
also polynomial. The final models approximate dynamical data in a least-squares sense and, by design, present
the first period-doubling bifurcation at a specified value of parameters. The procedure is illustrated by means
of simulated examples.
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I. INTRODUCTION

Model building from data was rather a mature field by the
mid 1990s in what concerns linear discrete-time models �1�.
Nonlinear discrete-time representations appeared in the
1980s with polynomials �2�, radial basis functions �3�, and
multilayer perceptron neural networks �4�. Other model
classes include fuzzy models �5� and wavelets �6�. The first
works applied to nonlinear dynamics appeared in the late
1980s and early 1990s �7–11�.

The aforementioned papers were followed by many others
in which diverse aspects of model building were addressed in
the context of particular model classes. Some of such refer-
ences will be quoted throughout this paper, whenever appro-
priate.

In the field of nonlinear dynamics, it seems possible to
distinguish two broad classes of problems which shall be
referred to as time series modeling �TSM� and dynamical
system modeling �DSM�. The former usually aims at prob-
lems such as forecasting, classification, geometrical, and sta-
tistical characterization of time series. The latter, on the other
hand, aims at dynamical analysis, geometrical and topologi-
cal characterization of dynamical systems, reconstruction of
bifurcation diagrams, and the like. Although the intended
application of the resulting models is different in each case,
the algorithms used are often the same. Consequently, there
is a gray area in between these two classes and a clearcut
division is neither always possible, nor necessary. However,
to recognize some of the subtle differences underlying such
problems is usually convenient.

In this paper, various aspects of model building will be
discussed in the context of the two problems mentioned in
the previous paragraph. This will help appreciate the differ-
ences that exist among some alternatives. One of the key

issues in this paper will be the use of prior knowledge in
model building. It has been acknowledged that such an issue
deserves greater attention in the literature �12�. In addressing
this matter, it will be seen that to incorporate prior knowl-
edge into models has received some attention in DSM. The
types of information that have been used to build models will
be briefly reviewed and a new type of prior information will
be investigated, namely the presence of a periodic-point flip
bifurcation. Therefore, a procedure will be proposed to build
a model from dynamical data on a Poincaré section such that
one of its periodic points will undergo a period-doubling
�flip� bifurcation at a specified value of the parameter vector.

The remainder of the paper is organized as follows. Sec-
tion II surveys some aspects of model building from data
with and without prior knowledge. In Sec. III a new proce-
dure for constrained model building is presented. The result-
ing model is constrained to have a period-doubling bifurca-
tion besides approximating the dynamical data in some least-
squares sense. The new procedure is illustrated and
investigated in the light of numerical simulations in Sec. IV.
The main conclusions of the paper are provided in Sec. V.

II. AN OVERVIEW OF SOME ASPECTS
IN MODEL BUILDING

In what follows a rather general setting will be used to
describe the main steps in model building from data pro-
duced by a nonlinear dynamical system. Then, assumptions
will be made in order to turn the problems manageable. It is
hoped that by addressing the model building problem in this
way some of the potential pitfalls, due to the assumptions
made, will become more clear.

It is assumed that data Z and possibly some auxiliary
information I about a system S is available. The black-box
model building problem consists of building a mathematical
model M from the available data Z. If, in addition to Z, I is
also used to determine M, the procedure is often referred to*FAX: �55 31 3409-4850. aguirre@cpdee.ufmg.br
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as gray-box modeling. In either case, M should approximate
the system S in some sense. In the gray-box case, apart from
approximating the system S, the model M should either ex-
actly or approximately incorporate the auxiliary information
used.

A. Model building as an optimization problem

The problem of building a model M that approximates
the system S can be cast as an optimization problem. For the
sake of argument, assume there is a cost function J�S ,M�
which should be minimized with respect to features of the
model M. Therefore, the model that minimizes the afore-
mentioned cost function would be equivalent, in the sense
defined by J, to the system, that is, M�JS. The question is
as follows: Does M�JS guarantee M�S? Another way of
looking at the problem is to enquire the following: Which
types of cost function J can be used in such a way that M
�JS implies M�S most of the time?

Of course, the cost function J�S ,M� is too general to be
useful. To see this it suffices to consider that at this stage
there is no representation of the system S and consequently
such a cost function cannot be defined. Usually S is only
known via the available data Z and by the auxiliary infor-
mation I, whenever the latter is available. Therefore, it
would be natural to redefine the cost function as J�Z ,M�,
for black-box modeling, and J�Z ,I ,M�, for gray-box mod-
eling. Each of these cases will be addressed in turn.

1. Black-box case

The last step taken in the previous paragraph �definition
of the cost function� created an equivalence problem. Origi-
nally, it made sense to handle S and M in the same cost
function because such entities are of the same type, that is,
both are dynamical systems �although S is “abstract” and M
is mathematical�. Having seen that, it is reasonable to accept
that replacing S with the data Z in the cost function will also
require replacing M with some model data ZM.

In order to be more specific, assume that a subset Z
�RN�r of data is taken from Z, Z�Z. Z is assumed to be
composed of at least one time series y�k� ,k=1, . . . ,N called
the output, and possibly other exogenous time series
u1�k� , . . . ,ur−1�k� ,k=1, . . . ,N called inputs. If only one time
series is available, it is interpreted as the output y�k�, and in
such a case Z= �y�1� . . .y�N��T.

Therefore, using Z and implementing the modification
mentioned in the paragraph before the last, a practical cost
function for black-box modeling would be J�Z ,ZM�, where

Z = �
z1

T

z2
T

]

zN
T
� = �y u1 . . . ur−1� = �

y�1� u1�1� . . . ur−1�1�
y�2� u1�2� . . . ur−1�2�
] ] . . . ]

y�N� u1�N� . . . ur−1�N�
�

ZM = �
ẑ1

T

ẑ2
T

]

ẑN
T
� = �ŷ u1 . . . ur−1�

= �
ŷ�1� u1�1� . . . ur−1�1�
ŷ�2� u1�2� . . . ur−1�2�
] ] . . . ]

ŷ�N� u1�N� . . . ur−1�N�
� ,

where ŷ�k�= f�zk−1� is the model one-step-ahead prediction.
So, finally, many black-box model building techniques solve
the following optimization problem

min J�Z,ZM�

subject to � � D , �1�

where often J�Z ,ZM� is chosen as the inner product �y , ŷ	, �
is the parameter vector of M, and D stands for the feasible
set. When D is Rdim���, as it is usually the case in black-box
modeling, the optimization problem �1� is said to be uncon-
strained. Hereafter in the unconstrained case the indication of
the feasible set will be omitted.

2. Gray-box case

It should be recalled that, to attain Eq. �1�, Z was replaced
with Z and M with ZM in the argument of J�Z ,M�. This
reveals that, in the gray-box model building procedure, I
would also need to be replaced to render the problem man-
ageable. In order to do this, let us assume that the particular
type of information available, I�I, can be mapped into the
model. With some abuse of nomenclature this can be repre-
sented as g−1�I�=M or equivalently as g�M�= I. By this it is
meant that a certain type of information can be inserted into
the model �this process is represented by g−1� or can be ex-
tracted from the model �this would be represented by g�.
Therefore, J�Z ,I ,M� becomes J(Z , I ,ZM ,g�M�) and the
optimization problem to be solved is

min J„Z,I,ZM,g�M�… . �2�

A practical way of solving Eq. �2� is to decompose the
cost function into two and solve the multiobjective problem

min �J�Z,ZM� + �1 − ��J„I,g�M�…,� � �0, 1� . �3�

Another way of solving Eq. �2� is to use g�M�= I to de-
fine constraints and to solve the constrained optimization
problem

min J�Z,ZM�

subject to g�M� = I . �4�

The interpretation of Eq. �4� is that not all “good” black-
box models are acceptable, but now only a subset of models
�composed by those that are consistent with the information
I� is the feasible set. In other words, model M not only
should minimize J�Z ,ZM�, but also should be consistent with
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the auxiliary information I, in the sense that g�M�= I or, at
least, g�M�
 I.

More often that not, the numerical solutions of the opti-
mization problems stated in Eqs. �3� and �4� are fairly stan-
dard. The great difficulty, however, is to find a certain type of
auxiliary information I that relates to the model M by a well
defined function g, such that g�M�= I. As it will be dis-
cussed below, the ease with which a certain type of informa-
tion is mapped into a model will greatly depend on the type
of information, on the model class, and on the particular
model structure.

B. Model class

In this paper only single-output discrete-time model
classes will be considered. Such model classes can be repre-
sented as y�k�= f�x�k−1��, where y�k� is the scalar output at
“time” k, f stands for the model, and x�k−1� is a vector of
regressor �independent� variables taken at “time” k−1.

For the sake of discussion three broad classes of models
will be mentioned. Such classes cover most of the examples
of global discrete-time models to be found in the literature
on nonlinear dynamics.

The first broad class is the perceptron model. Conven-
tional simplifications in this class of models are �i� to take
only one hidden layer of nodes, �ii� consider the output node
linear, and �iii� consider all the activation functions h of the
hidden layer nonlinear and the same. A perceptron model
with such features is illustrated in Fig. 1�a� and can be de-
scribed mathematically as

y�k� = bo + �
j=1

m

wj
oh�bj + �

i=1

n

wji
h xi�k − 1� , �5�

where wji
h indicates a weight �to be estimated� of the hidden

layer that connects the ith input to the jth neuron of the
hidden layer. wj

o is the weight �to be estimated� of the jth
hidden neuron output, b’s are constants, called bias param-
eters, and the neuron activation function is h. Finally, n
=dim�x� and m is the number of neurons in the hidden layer.
The function shown in the right-hand side of Eq. �5� is often
called feedforward because there are no feedback loops in-
ternal to the network. It is important to notice that Eq. �5� is
in the form y�k�= f�x�k−1��. Common choices for nonlinear
activation functions are Gaussian, sigmoidal, and the hyper-
bolic tangent. The weights and the bias terms, on the other
hand, are determined by optimization algorithms that search
to minimize a cost function which usually depends on the
difference between the given data and the network output. In
a recent study, different approaches to network training were
compared �13�. One of the first papers to build this kind of
model for chaotic data seems to have been �14�. More recent
and impressive results have been discussed in �15�.

The second broad class is shown in Fig. 1�b�. One impor-
tant difference with respect to the first class is that now there
are no weights associated to the connections between the
inputs and the nodes in the hidden layer. The function � is
nonlinear and often depends on certain tuning parameters
which are usually known when the weights associated to the
connections indicated by solid lines �Fig. 1�b�� are to be
estimated. As a consequence, the model is linear in the pa-
rameters. A common example of such a model class is ob-
tained by choosing � to be some radial function �7�

y�k� = b0 + �
i

p

wi�„x�k − 1�… + �
i=1

n

aixi�k − i� , �6�

where p is the number of radial basis functions. b0, wi, and ai
are the unknown parameters to be estimated. One of the first
works to use this model class was �3�, and in the hidden layer
only nonlinear nodes were used. Work using this type of
model has been recently surveyed in �16�.

The third model class is illustrated in Fig. 1�c�. The main
difference with respect to the second class is that the basis
functions are usually different, that is, �i�� j. Another im-
portant difference, not revealed in the figure, is that, whereas
it is usually assumed in the second class that the input vector
is uniform, in the third class such uniformity is not required
�see Sec. II D�. However, the main difference is that various
basis functions are often used in Fig. 1�c� in such a way as to
enable matching different data features. One possible choice
of basis functions �i are monomials of different degrees �17�.
This choice of basis functions constrains the resulting mod-
els to those cases in which the dynamics underlying the data
can be approximated by a linear combination of nonlinear
monomials. For systems that are more strongly nonlinear,
other basis functions should be preferred. On the other hand,
the choice of monomial basis functions enables building
models which are more information-dependent than models
for which all the basis functions are of the same type. This
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FIG. 1. Schematic representation of general model classes. �a�
Typical perceptron model, �b� single-type basis function models,
and �c� multitype basis function models. Solid lines correspond to
parameters that must be estimated. Dashed lines indicate absence of
parameters. Therefore �a� is nonlinear in the parameters while �b�
and �c� are linear in the parameters. Usually � depends on some
parameters. When this is the case, such parameters are chosen
beforehand.

BUILDING DYNAMICAL MODELS FROM DATA AND PRIOR… PHYSICAL REVIEW E 76, 046219 �2007�

046219-3



remark will be exploited further in the second part of the
paper.

A class of models that lies somewhere in between the
second and third classes is the wavelet network �wavenet�. In
such a model class the linear node in the hidden layer �see
Fig. 1�b�� is not used, consequently the last summation in Eq.
�6� is absent. The basis functions � can be chosen as wavelet
functions that depend on dilation and translation parameters
which are taken a priori over a grid of values. In this respect
the basis functions are of the same type, but have different
scales. This will ensure that different time scales in the data
are matched by some basis function. In �6� the “Mexican
hat” wavelet function was used, whereas tensor product
wavelet functions were used in �18�, and B-splines in �19�. In
the context of process control, relevant work has been ac-
complished choosing the basis functions to be Laguerre ex-
pansions of Volterra models �20�.

C. Model structure selection

Having chosen a model class, the model structure selec-
tion problem is basically to determine which model topology
is more adequate, given Z �black-box problem� or given Z
and I �gray-box problem�. One of the most fundamental aims
in model structure selection is to find the simplest model that
is consistent with Z �and eventually with I�. Much work has
been performed in this field and it would be impossible to
survey even the main approaches in nonlinear dynamics
�11,21–28�. In this section, however, a couple of relevant
issues concerning structure selection will be pointed out.

First, it is important to notice that for the model classes
illustrated in Figs. 1�a� and 1�b�—for which the activation
and basis functions h and � are usually chosen a priori—the
model structure is basically determined simply by the size of
the model. The inclusion of one more basis function or one
more node in the hidden layer might improve �or not� per-
formance but no new feature is gained with the new inclu-
sion. In the context of black-box problems this is most wel-
come, because the model class is sufficiently general to cope,
in principle, with most situations and the only concern is
with the model size. One way of performing this task is
using information criteria �22,27,29�, although it has been
shown that such criteria are unable to guarantee good overall
dynamical performance �21,30,31�.

On the other hand, models from the third class, see Fig.
1�c�, require not only the decision of how large the model
should be but especially which basis functions �i should
compose the model. For models of this class, the simple use
of information criteria is ineffective unless all possible com-
binations of basis functions are tried. So, first of all, it has to
be decided which sets of basis functions are more adequate
and then try to decide on how many basis functions should be
used. This double concern, in fact, underlies the procedure
developed in �32�. Such a procedure makes no assumptions
on the type of basis functions, so much so that it was suc-
cessfully applied to choose the centers in radial basis func-
tion models �33� and wavelet models �34,35�. However, no-
ticing that the basis functions �i are found in groups �called
term clusters �i�, a complementary procedure was proposed

to aid in the selection of which class of basis functions are
more adequate �36�. The formalism of term clusters has been
found useful in diverse applications of model structure selec-
tion problems �26,37,38�. Detailed simulation studies have
shown that the correct choice of which term clusters �i
should be considered to compose the model is generally
more critical than how many functions are used �21,24�.
Apart from this, it has been pointed out recently that the
original algorithm put forward in �32� does not necessarily
choose the best basis functions when the input is not suffi-
ciently exciting �26�. A model-free procedure to choose the
maximum lags in the embedding has been proposed in �39�
and a tree-based search applied to the selection of model
structure has been recently investigated in �40�. Several
model classes have been compared in the modeling of pre-
sliding friction dynamics in �41,42�.

In second place, it should be highlighted that in the con-
text of black-box modeling, the double aspect of structure
selection for the class of models illustrated in Fig. 1�c� is
somewhat less convenient than that for the model classes
shown in Fig. 1�a� and Fig. 1�b�. On the other hand, because
the sets of basis functions �i code different type of informa-
tion �43� such a feature could be used to advantage in the
context of gray-box modeling if the available information
could be mapped into the model, that is, if a function g can
be defined such that g−1�I�=M and g�M�= I �see Sec.
II A 2�. Of course, the last assertion is valid for all the model
classes illustrated in Fig. 1. However, because the model
classes shown in Fig. 1�a� and Fig. 1�b� are more general, it
is typically more difficult to establish g. Examples of g for
different types of information and of model class will be
provided in Sec. II F.

Before closing this section, it is argued that in choosing
the model class, because of the parsimony principle, the most
consistent approach would be to start off with the simplest
model class �e.g., linear models� and then, having verified
that the resulting model is inadequate, move on to a more
general model representation.

D. Uniform and nonuniform embeddings

A key issue in modeling nonlinear dynamics is that of
selecting an appropriate embedding space. In principle, this
would include two stages: The choice of observables �44,45�
and the choice of embedding parameters �46�. In many prac-
tical situations, although the observable is determined before
data acquisition, the embedding parameters—basically the
embedding dimension, d, and the time delay, �—can be de-
termined by the user a posteriori.

Using the nomenclature of Fig. 1, the input vector, at the
left-hand side of the models, determines the embedding
space. In particular, for time delay coordinates of autono-
mous systems we could have

x�k − 1� = �y�k − ��y�k − 2�� . . . y�k − d���T. �7�

It has been duly pointed out that the problem of choosing
an embedding in the context of model building is a bona fide
stage of the modeling procedure �47�. Also, the uniform em-
bedding defined by taking the elements of x in Eq. �7� to be
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the coordinates is not necessarily optimal. Therefore, which
elements �coordinates� should be chosen to compose x is also
part of the modeling problem. An optimal solution to such a
problem might require an embedding space in which the
“temporal distances” from one coordinate to another are not
necessarily the same. The authors of �47� call embedding
spaces with this character irregular.

Despite this, it is commonplace to build discrete-time
models using regular embeddings. To enable irregular em-
beddings �see Fig. 1� it suffices not to connect certain input
nodes to the middle layer. Here it is pointed out that the
choice of particular basis functions �i is in some cases
equivalent to the choice of embedding coordinates which
could turn out to be irregular. In fact, Eqs. �13� and �21� in
�48� and Eq. �37� in �17� are some examples of models �au-
tomatically� built on irregular embeddings. In conclusion, it
becomes clear that the modeling procedure followed in �17�,
for instance, includes the choice of embedding coordinates as
a part of the modeling procedure, as pointed out in �47�.

E. Model validation

In the context of time series modeling �TSM�, it is usually
assumed that there is a separate set of data Zv, similar to Z,
available for model selection.

For many models, the parameters are estimated by solving
the problem outlined in Eq. �1� for ZM taken as the one-step-
ahead predictions. A key-point to realize is that the dynami-
cal features of the model M are difficult to assess by ana-
lyzing ZM �26,71,72� and a consequence of this is that
solving Eq. �1� cannot possibly guarantee �although it is
hoped that it will come close� that M�S. As pointed out in
Sec. II A, the bottom line is that even if the model approxi-
mates the system in terms of a particular choice of J, that is
M�JS, that does not necessarily imply M�S. In particu-
lar, that last remark is often true when J is the sum of
squared residuals.

At this stage it will be useful to notice that, in theory,
what can be guaranteed during model building is that a set of
data produced by the model is consistent—in terms of J—to
data measured from the system, that is, ZM�JZ. However, in
practice, only a few �sometimes just one� realizations of the
system are available for model validation �those data are in-
dicated by Zv� and all that can be verified is if ZM�JZv.
Should either Z, Zv or ZM not clearly represent the dynamics
of S or M adequately, very little can be said about the model
quality. This nontrivial problem is at the center of model
validation.

With the above discussion in mind, it can be appreciated
that in order to increase robustness, from a dynamical point
of view, it would be convenient that the optimization step, in
the cost function J�Z ,ZM� used a set of model data ZM that
should be dynamically more representative of the model than
the one-step-ahead predictions. The ideal situation would be
to build ZM with free-run simulation data. This, unfortu-
nately, would turn out to be computationally very demanding
and probably would not apply to systems with positive
Lyapunov exponents. Free-run predictions have been re-
cently used to great advantage in the problem of structure

selection �26� and network training �13�. Also, the multiple-
shooting parameter estimator circumvents some of the
problems that arise when ZM is built with one-step-ahead
predictions �49–51�. In a recent work the concept of synchro-
nization of discrete models �52� was used in the problem of
model selection �53�.

F. Use of prior information

In general, the problem of building models from data and
additional information �sometimes referred to as a priori or
auxiliary� has been postponed. In the context of linear mod-
els or nonlinear process models, some results are available
�54–58�. The general setting is to have the dynamical data Z
plus some other source of information I and to use both in
building a model, as discussed in Sec. II A 2.

As pointed out in �12� there seems to be less applications
of gray-box modeling in the realm of nonlinear dynamics.
One of the aims of this paper �see next section� is to put
forward a procedure by which it is possible to impose a
certain type of information I on a class of nonlinear discrete
models built on a Poincaré section. In fact, as it will become
clear later, the mention of a Poincaré section is only to em-
phasize that in the present paper the concern is with period-
doubling of periodic-points in maps rather than the period-
doubling of trajectories of flows. Before presenting the new
procedure, it will be convenient to clarify under which cir-
cumstances gray-box modeling could be profitable and to
mention some previous results in the field.

If all that is desired of the system is already available in
the particular set of data used for model building, Z, then
granted that the model class is sufficiently general and that
the model structure is adequate, the resulting model should
be a sufficiently accurate representation of the system. In this
case there is no motivation to use an additional piece of
information I. However, often in practice, for a number of
different reasons—such as presence of noise, poor choice of
observable, poor frequency content in the data, limited am-
plitude excursion, and the like—the available data Z either
does not have all the desired information about the system or
such information is difficult to obtain. In such cases it is
conceivable that additional information, I, be available and it
is natural to enquire if it is possible to use I to build the
model. Thus, more often than not, if Z is of “good” quality
and “sufficiently” complete, black-box modeling should be
the practitioner’s first choice.

In the realm of nonlinear dynamics, procedures have been
put forward for building models using auxiliary information.
The number of fixed points were used in �59�; the location of
fixed points were used in �60� to solve problem �3�. Informa-
tion about the symmetry was recently used to constrain not
only the topology but also the parameter estimates of net-
work and radial-basis function models �61�. Lastly, topologi-
cal features such as folding and tearing mechanisms �62,63�
in addition to the location and local eigenstructure of fixed
points has been used in �64�.

In what follows a different type of information will be
used in synthesizing nonlinear models from data. The result-
ing models must, by construction, be consistent with the ad-

BUILDING DYNAMICAL MODELS FROM DATA AND PRIOR… PHYSICAL REVIEW E 76, 046219 �2007�

046219-5



ditional information used. An important point to be noticed is
that the type of information to be used in the next section can
be comfortably handled by models of the type illustrated in
Fig. 1�c� with monomial bases. Other model classes, while
being better suited to approximate stronger nonlinearities,
are less apt to have hard dynamical constraints imposed dur-
ing model building. This tradeoff between approximation ca-
pability and handling of a priori information is one of the
important points illustrated in the present work. Moreover,
the previous discussion also suggests that the type of a priori
information which is available and is desired to be used in
the modeling procedure can provide a concrete aid in choos-
ing which model class to select.

III. IMPOSING A PERIOD-DOUBLING BIFURCATION
TO A DATA-DRIVEN MODEL

A. Statement of the problem

It is assumed that a set of data Z is available from a
system S. It is also assumed that the system undergoes a
period-doubling bifurcation for a given parameter value 	c.
If the system is a flow for which a periodic orbit period-
doubles, then it is further assumed that the data Z are taken at
a Poincaré section and in this case the searched model will
be of the Poincaré map and not of the original flow. It is
desired to build a model M�	� from the data Z such that for
	=	c a specified periodic point of the model undergoes a
period-doubling �flip� bifurcation.

In this case I is the information about the desired bifurca-
tion. In order to solve the gray-box problem �see Sec. II A 2�
it is necessary to be able to map such information into the
model, that is, it is necessary to find a function g such that
g−1�I�=M. Here is where choosing the model class plays a
role. If a certain type of information is available and should
be used, only model classes for which g can be found are
useful in this particular type of problems. In what follows it
will be shown how to relate the information I with the model
M.

As stated, the present problem is not directly applicable
because although it is realistic to get Z from a system that is
known to undergo a period-doubling bifurcation, and even if
a real parameter 	S is measured, the parameter value that
must be known is 	, which will depend on how the model
M�	� is parametrized.

A more restrictive situation, but also more realistic would
be to use a reference set of data Z0 to build a nominal model
M0�	� in a black-box fashion �see Sec. II A 1�. Assuming
that the structure of M0�	� is adequate, find the critical
value 	c for which a periodic point ȳ of M0�	� undergoes a
period-doubling bifurcation. In this setting, the fact that the
system undergoes a flip at 	=	c is the additional informa-
tion to be used, I.

As discussed in Sec. II F, the main motivation for using
auxiliary information is to compensate for the loss or for the
blurring of information in Z. Therefore, it is assumed that
new data are gathered from the system, say Z1, but such data
are noisy. It is known that the effect of noise in dynamical
data is to shift the bifurcations in the models built from such

data �see �65�, for instance�. The problem then becomes to
build a model M1�	� from the noisy data set Z1 using the
fact that the system undergoes a flip, which for the nominal
model happens at 	=	c. That additional information will
serve as an anchor to grant robustness to the bifurcation
structure of M1�	�. In practice Z0 could be data collected
under controlled circumstances and Z1 collected in the field
and therefore of lower quality.

B. Procedure

For the sake of presentation, the procedure will be de-
scribed based on a quadratic map that undergoes a period-
doubling bifurcation

yk = 1 + 
yk−1 + 	yk−1
2 , �8�

where 
 and 	 are parameters and the latter is taken as the
bifurcation parameter. A similar procedure can be developed
for normal forms.

Steady-state analysis of Eq. �8� results in ȳ=1+
ȳ+	ȳ2.
One of the key points in the procedure that will follow is to
realize that any discrete-time polynomial map composed
with �any number of� terms taken from the term clusters �73�
�0 �constant�, �y and �y2 will have a similar steady-state
equation �59�. This last remark is very important because in
many situations the system to be modeled will not be one-
dimensional and consequently the map �8� will be insuffi-
cient. Nonetheless the procedure to be developed will still
apply.

In order to simplify presentation, let us consider a three-
dimensional map with all possible combinations of terms
taken from �0, �y, and �y2:

yk = f�yk−1� = �0 + �1yk−1 + �2yk−2 + �3yk−3

+ �11yk−1
2 + �12yk−1yk−2 + �13yk−1yk−3

+ �22yk−2
2 + �23yk−2yk−3 + �33yk−3

2 . �9�

Recalling that the state vector of this model is composed
by yk−1= �yk−3yk−2yk−1�T, then yk=F�yk−1�. The Jacobian ma-
trix of Eq. �9� is given by

DF = �
0 1 0

0 0 1

�f

�yk−3

�f

�yk−2

�f

�yk−1

� , �10�

where

�f

�yk−3
= �3 + �13yk−1 + �23yk−2 + 2�33yk−3,

�f

�yk−2
= �2 + �12yk−1 + 2�22yk−2 + �23yk−3,

�f

�yk−1
= �1 + 2�11yk−1 + �12yk−2 + �13yk−3.

The eigenvalues of Eq. �10� are given by the solutions of
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�3 −
�f

�yk−1
�2 −

�f

�yk−2
� −

�f

�yk−3
= 0. �11�

Because the main concern is to reproduce a flip bifurca-
tion, Eq. �11� will be evaluated at the periodic-point �fixed-
point� ȳ. This substitution yields

�3 − ��1 + �2�11 + �12 + �13�ȳ��2 − ��2 + ��12 + 2�22 + �23�ȳ��

− ��3 + ��13 + �23 + 2�33�ȳ� = 0. �12�

Steady-state analysis of Eq. �9� starts by substituting ȳ
=yk−1=yk−2=yk−3. This yields

ȳ = �0 + �yȳ + �y2ȳ2, �13�

where the values of the cluster coefficients �i are evident
�59�. The similarity of Eqs. �13� and �8� is obvious and will
be used in the following. The solutions of Eq. �13� yield the
periodic points of the model, ȳ= ȳi , i=1,2. It should be
pointed out that the steady-state analysis of any polynomial
model of degree two, of any order �74�, will yield Eq. �13�,
but of course for different values of the cluster coefficients.
Closed solutions for models with three periodic-points �de-
gree three� are given in �59�.

The solution of Eq. �12� yields the eigenvalues of the
Jacobian matrix DF at the periodic point, say ȳ= ȳ1. If the
model is to undergo a flip bifurcation then one of the eigen-
values must be �=−1. Hence, taking ȳ= ȳ1 and �=−1 in Eq.
�12� yields the following constraint:

�3 − ��1 + �2�11 + �12 + �13�ȳ1��2

− ��2 + ��12 + 2�22 + �23�ȳ1�� ,

��3 + ��13 + �23 + 2�33�ȳ1� = 0,

− �1 + �2 − �3 − 2ȳ1��11 + �13 − �22 + �33� = 1. �14�

At this stage the problem can be stated as follows. Given
the dynamical data Z, a polynomial model of any order is
sought that will fit the data. For the sake of presentation only
quadratic models will be considered, but the extension to
models of higher degree is possible. The model so obtained,
whichever the particular structure, will be characterized in
steady state by Eq. �13�. The parameters of the model must
be estimated in such a way as to simultaneously satisfy the
following.

�1� Yield a good dynamical fit to the dynamical data Z.
�2� Guarantee that ȳ1 be a periodic point of the model.
�3� Guarantee that for �y2 =	c, ȳ1 undergoes a flip, that is,

one eigenvalue of the Jacobian matrix will be �=−1 when
evaluated at ȳ= ȳ1.

The key issue now is to be able to write such require-
ments in terms of the model parameters, since g�M�= I. In
fact, that has already been done in Eqs. �13� and �14�. Such
constraints can be written in matrix form as

c = S� , �15�

where

cT = �ȳ1 	c 1� ,

S = �1 ȳ1 ȳ1 ȳ1 ȳ1
2 ȳ1

2 ȳ1
2 ȳ1

2 ȳ1
2 ȳ1

2

0 0 0 0 1 1 1 1 1 1

0 − 1 1 − 1 − 2ȳ1 0 − 2ȳ1 2ȳ1 0 − 2ȳ1
� ,

�T = ��0 �1 �2 �3 �11 �12 �13 �22 �23 �33� .

The first constraint in Eq. �15� is actually Eq. �13�; the
second constraint imposes that the cluster coefficient �y2,
which was chosen the bifurcation parameter, should have the
specified value 	c at the bifurcation point. Finally, the last
constraint, which is Eq. �14�, guarantees that whenever �y2

=	c, one eigenvalue of the Jacobian matrix will be �=−1.
All the remaining degrees of freedom will be used to fit the
dynamical data Z. Clearly, the set of constraints �15�—which
code the auxiliary information I—are in the form of Eq. �4�,
that is, Eq. �15� maps the information concerning the re-
quired bifurcation into the model by means of the model
structure and parameters.

Finally, given the dynamical data, Z, the one-step-ahead
prediction of the model �9�, ZM, and the set of constraints
�15�, g�M�= I, there is a well known solution to the problem
�4�, namely �66�

�̂CLS = �T�−1Ty − �T�−1ST
„S�T�−1ST

…

−1

��S�̂LS − c� , �16�

where  is the regressor matrix, �̂LS and �̂CLS are the least-
squares unconstrained and constrained solutions, respec-
tively, and S and c are defined in Eq. �15�. The extension of
this procedure to other polynomial models is possible.

IV. NUMERICAL RESULTS

The main points of the procedure presented in the previ-
ous section will be illustrated in this section by means of two
simulated examples. In the first example, the aim is to illus-
trate the validity of the procedure described in Sec. III. In the
second example, greater emphasis will be given to practical
issues.

A. Hénon map

Data Z �N=500� was produced simulating the two-
dimensional map �67�

yk = 1 + 0.3yk−2 + 	yk−1
2 , �17�

with 	=−1.4. The bifurcation diagram of Eq. �17� is shown
in Fig. 2. The reconstruction of the bifurcation diagram of
this map from different model structures was discussed in
�59�.

Eighty percent �80%� zero-mean Gaussian noise was
added to the data. From such data the following model was
obtained using the well-known least squares algorithm:

yk = 0.5569 − 0.1077yk−1 + 0.1114yk−2

− 0.1490yk−3 − 0.3284yk−1
2 . �18�

Model �18� was obtained in a purely black-box fashion and
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its bifurcation diagram is shown in Fig. 3. From that figure it
is seen that the first flip bifurcation has been shifted by the
noise in the data. As a matter of fact, that shift increases with
the intensity of the noise, as illustrated in Fig. 4.

It is now desired to use the procedure put forward in Sec.
III to obtain another model that undergoes a flip at the origi-
nal value of the bifurcation parameter 	
−0.37. In this case
the modeling step will use the same dynamical data �cor-
rupted with 80% noise� plus the prior information concern-
ing the flip bifurcation at 	=−0.3675. The resulting model
will be called a gray-box model.

Taking the data range into account, it becomes quite ob-
vious that the periodic point of model �18� ȳ1
0.4 �and not
ȳ2
−3.5� should be used to build the constraints. Practical
aspects of the estimation of fixed points from data have been
considered in �68�. Having chosen which periodic point to
use, a second step is to decide its location. This point needs
further investigation as to its influence on the final model.
For the sake of simplicity, in this example, it was decided to
use the value that ȳ1 would have if the parameter of the
quadratic term �which is the bifurcation parameter� was �11
=−0.3675 �which is the critical value to have the period-

doubling�. Therefore, for �11=−0.3675, the periodic points of
model �18� are ȳ1=0.4276 and ȳ2=−3.5439.

As seen in Sec. III, the following restriction must hold

ȳ1 = �0 + �yȳ1 + �y2ȳ1
2

= �0 + ��1 + �2 + �3�ȳ1 + �11ȳ1
2, �19�

in order for the �new� model to have a periodic point at ȳ1.
The coefficient of the quadratic term is chosen as the bifur-
cation parameter that is 	=�11 to facilitate comparison with
Eq. �17�, but this is not a restriction to the method. Moreover,
the auxiliary information to be used in this example is that
the system undergoes a flip bifurcation at 	c=−0.3675. So,
finally, the set of restrictions �15� can be written for this
example as

� 0.4276

− 0.3675

1
� = �1 ȳ1 ȳ1 ȳ1 ȳ1

2

0 0 0 0 1

0 − 1 1 − 1 − 2ȳ1
��

�0

�1

�2

�3

�11

� ,

c = S� , �20�

where ȳ1=0.4276 and 	=−0.3675 were used. It should be
clear that other values could be used here. For instance, by
inspection of Fig. 2, a value closer to unity could be tried. In
this example the a priori knowledge about the system is that
the periodic point at ȳ1=0.4276 undergoes a period-doubling
bifurcation when 	
−0.36, that is, I= �0.4276 −0.3675 1�T.

Therefore, using Eq. �16�—with c and S as defined in Eq.
�20�, and � being the parameters estimated by the LS, see
model �18�—to reestimate the model parameters yields

yk = 0.6062 − 0.2136yk−1 + 0.2126yk−2

− 0.2595yk−3 − 0.3675yk−1
2 , �21�

which has periodic points at ȳ1=0.4276 �imposed� and ȳ2
=−3.8578 �free�. The three eigenvalues of the Jacobian
matrix evaluated at ȳ1 are �1=−1 �imposed�, �2,3
=0.2361±0.4515 �free�. Clearly, the fixed point ȳ1 undergoes

−1.4 −1.2 −1 −0.8 −0.6 −0.3675 −0.2
−1.5

−1

−0.5

0

0.5

1

1.5

µ

y k

FIG. 2. Bifurcation diagram of the Hénon
map �17�.
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FIG. 3. Bifurcation diagram of black-box model �18�. Notice
how the first bifurcation point was shifted to 	

−0.825, due to the noise in the data.
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−1.1

−0.9

−0.7
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−0.3675
−0.3

Signal−to−Noise Ratio (%)

θ
11

FIG. 4. Critical value of the bifurcation parameter 	=�11 �at
which occurs the first flip bifurcation� as a function of the noise
intensity for black-box models similar to Eq. �18�. The line in bold-
face corresponds to the same, however for gray-box models, for
which the first flip is imposed at a user-defined value. In this ex-
ample, the value was 	=−0.3675.

LUIS ANTONIO AGUIRRE AND EDGAR CAMPOS FURTADO PHYSICAL REVIEW E 76, 046219 �2007�

046219-8



a flip when the parameter of the quadratic term �which cor-
responds to 	� equals −0.3675, as desired. The bifurcation
diagram of model �21� is shown in Fig. 5�a�. As can be seen,
the first bifurcation point was successfully forced to 	

−0.3675, although the rest of the bifurcation diagram was
shifted.

If the bifurcating periodic point is taken to be ȳ1
=0.7276 in Eq. �20�, instead of ȳ1=0.4276 the resulting
model displays the bifurcation diagram shown in Fig. 5�b�.
As can be seen, the location of the bifurcating periodic point
can be interpreted as an effective bifurcation parameter by
which the pattern of periodic windows is changed. This de-
pendence of the bifurcation pattern of a given model on a
“generalized” parameter is an interesting topic that has been
investigated recently �69�.

Proceeding in this way, the location of the first flip bifur-
cation can be made insensitive to the noise intensity, as illus-
trated by the line in boldface in Fig. 4.

In order to further compare the dynamical performance of
models �18� and �21�, the procedure described in �53� was
implemented and the results shown in Fig. 6. The interpreta-

tion of this figure is as follows. For any given value of the
cost of synchronization �Jrms�, the gray-box model synchro-
nizes better �smaller �� than the black-box model. That is an
indication that the gray-box model is closer to the underlying
dynamics than the black-box model, at least for the consid-
ered bifurcation parameter value.

In the present example, the system was a model with a
mathematical structure �polynomial� very similar to that of
the models. As a consequence, the value 	c of the system
was imposed directly on the model. In the next example a
different system will be considered for which this will not be
the case.

B. Sine map

This example will investigate the sine map

yk = 	 sin��yk−1� , �22�

which displays chaotic dynamics for 	=0.98. The bifurca-
tion diagram of map �22� is shown in Fig. 7. Throughout this
example, the nomenclature established in Sec. III A will be
used to facilitate comprehension.

It is assumed that the present modeling problem starts
with a low-noise time series, Z0, of the original system. In
this example, such data were produced by iterating map �22�
with 	=0.98. This time series can be thought of as being
obtained from a real system under controlled conditions, thus
producing low-noise data. From 500 points of such high-
quality data, the following model, M0, was estimated using
least squares

yk = − 0.0672 + 4.0810yk−1 + 0.0065yk−2

− 4.0528yk−1
2 − 0.0146yk−1yk−2. �23�

Taking the parameter of the term yk−1yk−2 to be the bifurca-
tion parameter 	, and varying 	 within the range −1�	
�0, results in the bifurcation diagram shown in Fig. 8. In

−2 −1.6 −1.2 −0.8 −0.3675 0
−1

−0.5

0

0.5

1

µ

y k

−2 −1.6 −1.2 −0.8 −0.3675 0
−1.2

−1

−0.5

0.5

1

1.2

µ

y k

FIG. 5. Bifurcation diagrams of gray-box models. �a� Diagram
of Eq. �21� with bifurcating periodic point imposed at ȳ1=0.4276.
�b� Diagram of another gray-box model obtained using ȳ1=0.7276
instead. Notice how in both cases the first bifurcation point was
successfully forced to 	
−0.3675. Notice also how the location of
the imposed periodic point is able to alter the periodicity pattern of
the periodic windows.
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FIG. 6. Synchronization class vs cost of synchronization for
identified models. Thick line corresponds to the black-box model
�18� for 	=−2.68 and the thin line to the gray-box model �21� for
	=−1.84. The driving signal was produced with the original model
�17� with 	=−1.4.
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this problem, the prior information comes from M0, or al-
ternatively, from its bifurcation diagram shown in Fig. 8.

For 	=−0.71 �first flip bifurcation� the model �23� has the
following periodic points ȳ1=0.6257 and ȳ2=0.0226. No
doubts, it is ȳ1 that undergoes the first period-doubling bifur-
cation of the cascade.

It is interesting to notice that because Eq. �23� does not
have the same mathematical structure as the original map
�22�, this example furnishes a somewhat more realistic sce-
nario than in the previous example. Therefore we assume
that high quality data Z0 were obtained from a system and a
model was built from such data. In this example, such a
model is Eq. �23�. From this model three important pieces of
information will be used, namely �i� the structure, �ii� the
critical bifurcation parameter value at the flip bifurcation
point 	c
−0.71, and the location of the bifurcating periodic
point at 	c
−0.71, which is ȳ1=0.6257. In fact, such infor-
mation is coded in the vector I= �0.6257 −0.71 1�T.

Now, consider that a new model M1 must be built from
new data Z1 that, for some reason, do not bring forth clearly

bifurcation information. It is desired to use the new data Z
and the a priori information I to build such a model.

In this example, the bifurcation information in the dy-
namical data set will be blurred by adding 20% zero-mean
Gaussian noise. In other words, Z1 was produced by adding
20% noise to Z0. Proceeding to build an unconstrained
�black-box� model yields the following:

yk = 0.2444 + 2.8777yk−1 − 0.1698yk−2

− 3.0388yk−1
2 + 0.1906yk−1yk−2, �24�

for which the bifurcation diagram is shown in Fig. 9. Com-
paring the diagrams in Fig. 8 and Fig. 9, it is seen that the
noise shifts the flip bifurcation to 	
−0.08 and induces a
spurious period-three solution, seen in the figure within the
range −1�	�−0.72.

In order to build a model M1 from the noisy set of data
and the prior information I, the following set of constraints
should be used

�0.6257

− 0.71

1
� = �1 ȳ1 ȳ1 ȳ1

2 ȳ1
2

0 0 0 0 1

0 − 1 1 − 2ȳ1 0
��

�0

�1

�2

�11

�12

� , �25�

c = S� ,

where I=c and g�M1�=S�.
A new �gray-box� model can be reestimated from the

noisy data Z constrained by Eq. �25� using Eq. �16�. Such a
model, M1, is

yk = 0.0988 + 2.6675yk−1 + 0.3017yk−2

− 2.6896yk−1
2 − 0.71yk−1yk−2, �26�

which has periodic points at ȳ1=0.6257 �imposed�, and ȳ2
=−0.0464 �free�. The Jacobian matrix of model �26� evalu-
ated at ȳ1 has eigenvalues at �1=−1 �imposed� and �2
=−0.1425 �free�. From the bifurcation diagram of model
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FIG. 7. Bifurcation diagram of the sine map �22�.
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FIG. 8. Bifurcation diagram of the model �23� using the coeffi-
cient of the term yk−1yk−2 as the bifurcation parameter 	. Clearly,
for 	=−0.0146 the dynamical regime is chaotic and the first period-
doubling occurs at 	c
−0.71.
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FIG. 9. Bifurcation diagram of the model �24� using the coeffi-
cient of the term yk−1yk−2 as the bifurcation parameter 	. Notice the
noise-induced shift � suffered by the first flip bifurcation.
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�26�, shown in Fig. 10, it is seen that not only the first bifur-
cation point has been brought back to the a priori �imposed�
value 	c=−0.71, but also the spurious period three regime
has been eliminated, at least for the parameter range consid-
ered in the figure.

It should be noticed that the constraints used �see Eq.
�25�� impose �1� the location of the periodic point at the first
flip bifurcation, �2� one eigenvalue of the corresponding
Jacobian matrix must be �=−1, and �3� the specified critical
value of the parameter 	. In this way, by imposing �=−1, a
period-doubling bifurcation is necessarily obtained at the
chosen parameter value. All the rest of the diagram is shifted
as a consequence of the parameter estimation algorithm us-
ing the noisy dynamical data.

As done for the previous example, the ��Jrms plot was
computed for models �24� and �26�. This is shown in Fig. 11.
In this case, both models show very similar dynamical per-
formances at this bifurcation parameter value. It should be-
come clear at once that as we consider the bifurcation pa-
rameter closer to the value used in the constraint, i.e., 	
=−0.71, the gray-box model clearly outperforms the black-
box model.

V. DISCUSSION AND CONCLUSIONS

The field of modeling from data is mature. Many proce-
dures are now available to build nonlinear models from data.
It has been argued that in this field there are two realms of
applications that, in practice, have different aims and, there-
fore, end up using somewhat different procedures, though the
tools are basically the same. The two applications are time
series modeling and dynamical system modeling. The former
usually aims at forecasting and characterizing the data at
hand, whereas the second usually aims at investigating as-
pects of the “global” dynamics of the system that produced
the data.

Of course, such a classification is not unique nor can it be
claimed that it precisely divides the wealth of available tech-
niques into two distinct classes. Rather, there is a significant

gray zone of methods that could be classified either way,
depending on the focus. In fact, probably the best criterion to
classify a given method of model building is to pay attention
on how the obtained models are validated. This has been
recently discussed at some length in �53�.

Granted the aforementioned classification, the present pa-
per is concerned with dynamic system modeling. Although
much has been accomplished in this field since one of its
pioneering papers �7�, it seems that little attention has been
given to the problem of incorporating additional information
into the model building process, as pointed out in �12�. By
“additional” it is meant any type of information apart from
the time series from which models should be built.

More specifically, in this paper a procedure has been put
forward by which it is possible to constrain the resulting
model to have a periodic point at a certain location and to
force it to undergo a flip bifurcation for a chosen value of a
bifurcation parameter. Other constraints have been recently
used in the context of parameter estimation �70�. In short,
this paper has shown how to use a priori information �about
a periodic point that undergoes a period-doubling bifurcation
for a given bifurcation parameter value� in order to write
down constraints that are useful in building polynomial mod-
els that, by design, will reproduce the used information.

It is interesting to point out that, for the sake of illustra-
tion, it was assumed that there is clean data �i.e., lab data�
available from which a good model can be obtained. From
such a model the a priori information is obtained, namely:
the location of the periodic point at the first flip bifurcation,
the model structure and the critical value of the bifurcation
parameter at the flip. However, it should be clear that, in
principle, any periodic-point location and any critical bifur-
cation parameter value could be used. If “unreasonable” val-
ues were used, probably the estimated models would be un-
stable under iteration.

Another interesting point is to notice that the bifurcation
parameter could be taken, say, as the summation of the pa-
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FIG. 10. Bifurcation diagram of the gray-box model �26�. No-
tice how the first flip bifurcation has been successfully imposed at
	=−0.71.
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FIG. 11. Synchronization class vs cost of synchronization for
identified models. Thick line corresponds to the black-box model
�24� for 	=0.55 and the thin line to the gray-box model �26� for
	=0.10. The driving signal was obtained with the “original” model
�23� for 	=−0.17.

BUILDING DYNAMICAL MODELS FROM DATA AND PRIOR… PHYSICAL REVIEW E 76, 046219 �2007�

046219-11



rameters of the quadratic terms of the model �this is known
as the quadratic cluster coefficient �59��. For instance, in the
last example this would yield the following set of con-
straints:

�0.6257

− 0.71

1
� = �1 ȳ1 ȳ1 ȳ1

2 ȳ1
2

0 0 0 1 1

0 − 1 1 − 2ȳ1 0
��

�0

�1

�2

�11

�12

� ,

c = S� . �27�

By using the constraints �27�, the resulting model would
have a periodic point at ȳ1=0.6257 which would undergo a
period-doubling bifurcation whenever �11+�12=−0.71.
Therefore, there are many variations which could be tested
following the procedure presented in this paper. For the sake
of clarity, such a procedure was developed for a simple struc-
ture, but the extension to a more complex polynomial struc-
ture �i.e., with more terms, greater degree of nonlinearity,

greater dimension, etc.� is possible. On the other hand, the
application of these ideas to other representations like net-
work models is not obvious at the moment and should be
investigated.

The last remark leads us to point out that the type of a
priori information that can be used is greatly determined by
the model class. In the present paper such information was
related to a periodic point and a parameter value at which it
should undergo a period-doubling bifurcation. That type of
information can be comfortably handled by nonlinear
discrete-time models. Other model classes, while being bet-
ter suited to approximate stronger nonlinearities, are less apt
to have hard dynamical constraints imposed during model
building. This tradeoff between approximation capability and
handling of a priori information is one of the important
points illustrated in the present work.
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